

TM

ControlEverything.com

© Copyright 2016
All Rights Reserved

Current Monitoring Controllers
Command Reference Guide

ControlEverything.com

1

ControlEverything.com current monitoring controllers provide an
easy cross-platform solution for communicating current monitoring
data for a wide variety of energy management solutions. We devel-
oped a custom CPU that handles the di�cult task of current measure-
ment, all you have to do is communicate a simple set of I²C com-
mands to ask the controller the amperage draw across each channel.
This guide was developed to help you understand the I²C commands
implemented by our extensive line of current monitoring devices.

Getting Started:

Before getting started, we wanted to share a few important points
about this series of controllers.

1)

2)

3)

4)

5)

6)

2

We post our Sample Code on the ControlEverythingCom GitHub
repository page. Sample code should be referenced when reading
this manual. We have developed code for Arduino, Particle Photon,
Particle Electron, and the PC. Sample code shows speci�c informa-
tion for I²C implementation.

Current monitoring controllers require a minimum of 100ma to
operate properly.

A 12VDC power supply is required to power the current monitoring
controller.

Only a single wire may passed through the core sensor. Passing
more than a single wire will invalidate the data for the associated
channel.

Current Monitoring controllers spend 1/2 second evaluating each
channel. Data returned to the user may be up to 6 seconds old
when monitoring current on 12-Channel controllers.

We think you will be very pleased with the accuracy of our sensors.
We have been very conservative in our advertised values. We think
you will �nd our controllers to be signi�cantly more accurate than
most commercially available clamp meters. However, our test
equipment is limited to 20 Amps, therefore, higher current control-
lers have only been tested and calibrated up to 20 Amps. User cali-
bration beyond 20 Amps may be necessary.

Load

IMPORTANT USAGE WARNINGS:
This Current Monitoring Device is for use in AC Circuits Only.
The Maximum Current Rating Printed on the Circuit Board
Must be Followed or Damage to the CPU May Occur.

2.1mm Power Jack
12V DC (Center Positive)

500ma 5VDC Switcher Power SupplyAddress Jumper

12V DC Power Connector

Power LED

I²C Output to Next Device

SCL

SDA

+5V 400ma

GND

Particle Electron Port

AC Power
Source

3

Start Address A0 Jumper A1 Jumper A2 Jumper A3 Jumper

0x2A Removed Removed Removed Removed

0x2B Installed Removed Removed Removed

0x2C Removed Installed Removed Removed

0x2D Installed Installed Removed Removed

0x2E Removed Removed Installed Removed

0x2F Installed Removed Installed Removed

0x30 Removed Installed Installed Removed

0x31 Installed Installed Installed Removed

0x32 Removed Removed Removed Installed

0x33 Installed Removed Removed Installed

0x33 Removed Installed Removed Installed

0x34 Installed Installed Removed Installed

0x35 Removed Removed Installed Installed

0x36 Installed Removed Installed Installed

0x37 Removed Installed Installed Installed

0x38 Installed Installed Installed Installed

4

Up to 16 current monitoring devices can share a single I²C data bus.
You can easily mix our entire range of 5A to 100A current monitoring
controllers in any combination across a single I²C bus. A set of 4
jumpers, labeled A0, A1, A2, and A3 de�ne the I²C Start Address of
Each Device. Please See the Table Below to determine the I²C Start
Address of your Current Monitoring Controller:

NOTE: We will use the I²C Start Address of 0x2A in all examples shown
in this manual.

5

Communications:
ControlEverything.com current monitoring devices support 4 com-
mands. We have provided samples demonstrating communications
in multiple languages, greatly simplifying development. All of our
software samples begin with an I²C Start Address, and end with a
valid checksum. All 4 commands are 8 bytes in length. All current
monitoring controllers will ignore commands with an invalid check-
sum. Similarly, data is returned to the I²C Master with a valid check-
sum.

Our sample software will compute a checksum and compare it to the
received checksum. Current monitoring is considered a high-noise
application, it is our company policy to provide complete checksum
based communications in all custom �rmware to help reduce the
chances of errant data communications. Our software samples
should be consulted as the primary programming resource, as they
provide complete working samples for 2-way communications with
checksum validation. This guide should be used to help supplement
the program examples we have provided.

Current data is represented using 24-bits (3 bytes) at 1ma resolution
(the least signi�cant bit = 1ma). Computing the current data is very
easy: (MSB x 65536) + (MSB2 x 256) + LSB = Milliamps. So if the result
value is 32,338, the total current draw is 32 amps and 338 ma. De-
spite this seemingly high resolution, the actual value is usually within
5% or 3% (depending on controller model), which is more accurate
than most commercial clamp meters we have tested. Further cali-
bration can yield more accurate results (some of our testing has
yielded an accuracy within 10ma of actual), we have pre-calibrated
all controllers to match our master designs, we do not calibrate each
controller individually.

Crosstalk (or channel bleed) does occur at higher amperages (20A
and higher). Typically, the higher the current, the more crosstalk
between signals. Crosstalk can account for a signi�cant portion of
the total error per channel. However, the crosstalk errors introduced

6

are typically insigni�cant when compared to the errors displayed by
most commercial clamp meters we have tested. We typically test our
controllers up to 20A unless otherwise noted. Any controllers rated
for higher currents have not been validated for accuracy, and may
require further calibration. Duration testing of several weeks has
been performed on our controllers. There tends to be very little drift
over time, making our current monitoring series controllers ideal for
long-term energy management applications.

Matching Controllers to Current
Every current sensing controller we manufacture is pre-calibrated to
measure current over a speci�ed range. For instance, a 20A controller
is designed to measure a current over a range of 0 to 20A, but it can
measure slightly higher currents to account for over-current condi-
tions. Exceeding the Max current by more than 25% can cause
damage to the CPU. For instance, exceeding 20A + 25% (25A) can
cause permanent damage to the CPU. This is true of all current moni-
toring controllers we o�er. Please note that we have a 25% safety
margin designed into all of our controllers.
Because each controller is pre-tuned for a particular amperage range,
we highly recommend using a controller that meets, but does not
exceed your amperage range. For instance, if you need to measure
current on a 20A circuit, using a 30A controller is not advised. The
correct match would be a 20A controller. Never over-rate your con-
troller, doing so will cause an unnecessary loss of resolution across the
intended tuning range.

Command Summary:
Command 1: Reading Current
Command 2: Reading Device Information
Command 3: Reading Calibration Values
Command 4: Writing Calibration Values

7

Command 1: Reading Current
ControlEverything.com current monitoring controllers are constantly
monitoring current. Our custom current monitoring CPU examines
each channel and computes a current reading and stores this reading
in a bu�er. When current data is requested, the CPU instantly pulls the
latest reading from the bu�er and returns it to the I²C Master device.
Current Monitoring controllers require 1/2 second to evaluate each
channel. One-channel controllers refresh current readings every half
second. Twelve-channel controllers refresh current readings every 6
seconds. These delays do not a�ect communication in any way; how-
ever, current readings could be up to 6 seconds old by the time they
are communicated to the Master I²C controller.

The following section explains each byte of Command 1, followed by a
sample implementation.

Byte 1: 0x2A I²C Start Address
The I²C Start Address is determined by jumpers A0-A3 on the circuit
board. Please see the “Addressing” table earlier in this guide.

Byte 2 and 3: Header Bytes
The header bytes are used to identify current monitoring controllers,
these bytes are �xed and cannot be changed. These bytes are speci�c
to the current monitoring series of controllers, but have no other pur-
pose.

Byte 4: Command 1: Read Current
This byte 0x01 calls command 1 for reading the current from the con-
trollers.

8

Bytes 5 & 6: Channel Range
Bytes 5 and 6 of this command indicate the range of channel
numbers you would like to read. Valid decimal values are 1 to 12
(0x0 to 0xC) for these parameters. Here are a few examples to show
the proper use of bytes 5 and 6:

Read Channel 1 Only:
Byte 5: 1
Byte 6: 1
3 Bytes + Checksum will be Returned

Read Channels 1 through 12:
Byte 5: 1
Byte 6: 12
36 Bytes + Checksum will be Returned

Read Channels 11 and 12 Only:
Byte 5: 11
Byte 12: 12
6 Bytes + Checksum will be Returned

Byte 7: Reserved, Always Use 0

Byte 8: Reserved, Always Use 0

Byte 9: Checksum Calculation (See Below)

9

Checksum Calculation:
Checksum calculation is very easy. If you are working with a Micro-
controller, Checksum should be de�ned as a Byte, (avoid word or
integer de�nitions). By de�ning the Checksum value as a Byte, data
is automatically rolled over and truncated to the 8 least signi�cant
bits. Checksum is a very easy calculation: It is the 8-Bit sum of Bytes
2-8, Byte 1 is omitted from the Checksum Calculation.

Example:
Byte 1: 0x2A = 42 Decimal I²C Start Address
Byte 2: 0x92 = 146 Decimal Header Byte 1
Byte 3: 0x6A = 106 Decimal Header Byte 2
Byte 4: 0x1 = 1 Decimal Command Number 1: Read Current
Byte 5: 0x1 = 1 Decimal Start Channel Number
Byte 6: 0xC = 12 Decimal Stop Channel Number
Byte 7: 0x0 = 0 Decimal Reserved Byte
Byte 8: 0x0 = 0 Decimal Reserved Byte
Byte 9: 0xA Checksum (Least Sig. Byte, Sum of Bytes 2 to 8)

Note: Byte 1 is NOT Included in the Checksum Calculation
146+106+1+1+12+0+0 = 266 Decimal
The 16-Bit Value of 266 in Binary Looks Like this:
MSB:00000001:00001010:LSB
The Least Signi�cant Byte of 266 = 00001010 = 10 (Decimal)
10 Converted to Hexadecimal = 0xA
Byte 9: 0xA (or 10 if you prefer decimal values)

Note: This page represents our standard method of calculating
checksums for data transmission and reception. When receiving
data, the number of bytes received will change, but the checksum
calculations remain the same for all communications. The �rst byte
of a received packet will always be included in the checksum calcu-
lation.

10

Receiving Data from Command 1:
Command 1 always returns 3 Bytes per Channel in consecutive
ascending order, one additional byte is also included indicating the
8-bit checksum of all bytes sent. In the sample above, 36 Bytes (+ 1
Checksum) would be returned. The return data will look like this:

0x01,0x00,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x06

Let’s break these data into pieces and identify each segment:
0x01,0x00,0x05, Channel 1: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 2: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 3: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 4: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 5: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 6: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 7: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 8: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 9: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 10: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 11: MSB,MSB2,LSB
0x00,0x00,0x00, Channel 12: MSB,MSB2,LSB
0x06 Checksum

Calculating Current:
Calculating current values for each channel is very easy:
Current = (MSB * 65536) + (MSB2 * 256) + LSB
Current = (1*65536) + (0*256) + 5
Current = 65,541mA = 65 Amps 541ma for Channel 1

Current calculations should be discarded if the received checksum
value does not equal the 8-bit sum of bytes for the �rst 12 channels.

11

Command 1 Sample 2:
In this sample, we will demonstrate a 1 channel request using all
decimal values:

 Send Bytes: 42, 146, 106, 1, 1, 1,0,0, 255
 42 I²C Start Address
 146 Header Byte 1
 106 Header Byte 2
 1 Command Number
 1 Start Channel
 1 End Channel
 0 Reserved Byte
 0 Reserved Byte
 255 Checksum (146+106+1+1+1+0+0 = 255)

Receive Bytes: 0,5,112,117
 0 MSB
 5 MSB2
 112 LSB
 117 Checksum
 0+5+112=117

Checksum Validation:
 117 Calculated = 117 Data Received so Data Packet is Valid
 If these values are not equal, data packet should be rejected

Converting to a Current Reading:
 0 Current MSB
 5 Current MSB2
 112 Current LSB

Current = (MSB x 65536) + (MSB2 x 256) + LSB
Current = (0 x 65536) + (5 x 256) + 112
Current = 1392mA
Current = 1 Amp, 392ma

12

Command 1 Sample 3:
In this sample, we will read channels 1,2, and 3 using decimal values.

Send Bytes: 42, 146, 106, 1, 1, 3,0,0,2
 42 I²C Start Address
 146 Header Byte 1
 106 Header Byte 2
 1 Command Number
 1 Start Channel Number
 3 End Channel Number
 0 Reserved Byte
 0 Reserved Byte
 1 LSB of 257 = Checksum
 ((146+106+1+1+3+0+0=257) AND 255)

 257 converted to a 8-Bit using the “And” Math function
 Checksum = 257 AND 255 (Extracts Lower 8 Bits) = 1

Receive Bytes: 0,5,112,0,10,137,0,15,45,68
 0 Current MSB Channel 1
 5 Current MSB2 Channel 1
 112 Current LSB Channel 1
 0 Current MSB Channel 2
 10 Current MSB2 Channel 2
 137 Current LSB Channel 2
 0 Current MSB Channel 3
 15 Current MSB2 Channel 3
 45 Current LSB Channel 3
 68 Checksum

Current Channel 1 = (0 x 65536) + (5 x 256) + 112 = 1,392ma
Current Channel 2 = (0 x 65536) + (10 x 256) + 137 = 2,697ma
Current Channel 3 = (0 x 65536) + (15 x 256) + 45 = 3,885ma

13

Command 2: Read Device Identi�cation Data
This command is used to identify various features of your current
monitoring controller. This is a �xed command, there are no
parameters for this function:

Send Bytes: 42, 146,106,2,0,0,0,0,254
 42 is the I²C start address
 146 is the header byte 1
 106 is the header byte 2
 2 Command 2: Read Device Data
 0 Reserved byte
 0 Reserved byte
 0 Reserved byte
 0 Reserved byte
 254 is the CheckSum (146+106+2+0+0+0+0=254)

Receive Bytes Sample: 1,5,1,1,0,0 ,8
 The controller will respond with 7 bytes indicating various
parameters of the controller:

 1 Indicates sensor type, see last page of this guide for a
 complete list of supported sensors
 5 Indicates the max current supported by this device, in this
 case the max current supported by this controller is 5A.
 1 Indicates the max no of channels supported by this device,
 in this case the number of channels is 1; however, valid
 return values include 1, 2, 4, 6, 8, and 12.
 1 Indicate the �rmware revision, in this case the �rmware
 revision is 1.
 0 Reserved Byte
 0 Reserved Byte
 8 Checksum (1+5+1+1+0+0=8)

14

Command 3: Read Calibration Value
This command is used to retrieve the calibration values from the
controller. Altering the calibration values may improve accuracy.
The default values recorded into each controller are based on our
master designs, as we do not calibrate each controller individually.
All controllers are calibrated up to 20 Amps Max, controllers with
ratings above 20 Amps may require manual calibration.

Send Bytes: 42,146,106,3,1,1,0,0,1
 42 I²C Start Address
 146 Header Byte 1
 106 Header Byte 2
 3 Command Number 3 Reads Calibration Values
 1 Start Channel Number (1-12)
 1 End Channel Number (1-12)
 0 Reserved Byte
 0 Reserved Byte
 1 Checksum (146+106+3+1+0+0=0)

Receive Bytes: 00, 155,155
Example Above Reads 3 Bytes for Channel 1. Data is returned as a
16-Bit value + Checksum
 0 Current Calibration MSB Channel 1
 155 Current Calibration LSB Channel 1
 155 Checksum

Calibration Value = (MSB x 256) + LSB
Calibration Value = (0 x 256) + 155
Calibration Value = 155

15

Command 3 Example 2:
Reading the calibration value from multiple channels at one time is
also very easy, this sample demonstrates how to read calibration data
from channels 1, 2, and 3.

Send Bytes: 42,146,106,3,1,3,0,0,3
 42 I²C Start Address
 146 Header Byte 1
 106 Header Byte 2
 3 Command Number 3 Reads Calibration Values
 1 Start Channel Number (1-12 Valid Range)
 3 End Channel Number (1-12 Valid Range)
 0 Reserved Byte
 0 Reserved Byte
 3 CheckSum ((146+106+3+1+3+0+0) AND 255) = 3

Receive Bytes: 0, 155, 00,155,00,157,211
 0 Current Calibration Value MSB Channel 1
 155 Current Calibration Value LSB Channel 1
 0 Current Calibration Value MSB Channel 2
 155 Current Calibration Value LSB Channel 2
 0 Current Calibration Value MSB Channel 3
 157 Current Calibration Value LSB Channel 3
 211 Checksum ((0+155+0+155+0+157) AND 255)=211

Calibration Value Channel 1 = ((0 x 256) + 155) = 155
Calibration Value Channel 2 = ((0 x 256) + 155) = 155
Calibration Value Channel 3 = ((0 x 256) + 157) = 157

16

Command 4: Write Calibration Data
This command is used to store current sensor calibration data.
Before using this command, we strongly suggest users make only
small changes to the current settings, as the settings within the con-
troller should be very close to a usable calibration value. We do not
calibrate each controller individually, the values stored in your con-
troller are the values we use in our reference designs. In some cases,
calibration at the software level should be considered, as our control-
lers only allow for linear calibration. Our current monitoring test
equipment is limited to 20 Amps, controllers above 20 Amps may
bene�t from a non-linear calibration scheme, though we have been
unable to validate this theory.

Note: This command is able to pass only ONE calibration value. This
calibration value may be applied to one channel or a range of chan-
nels; however, this command cannot be used to store a di�erent
calibration value into each channel as a single command. If your
controller requires a di�erent calibration value for each channel, this
command should be called multiple times using the same Start and
End channels. No data is returned with this command.

Choosing a New Calibration Value:
As we mentioned before, the internal calibration value should be
close to the actual reading. Raising the default calibration value will
increase the amperage readings from the controller. Similarly, lower-
ing the default calibration value will decrease the amperage readings
from the controller.

17

Send Bytes: 42,146,106,4,1,1,0,150,152
This sample demonstrates the storage of calibration value of 150 into
Channel Number 1:

 42 I²C Start Address
 146 Header Byte 1
 106 Header Byte 2
 4 Command Number 4 Stores Calibration Data
 1 Start Channel Number (1-12)
 1 End channel number (1-12)
 0 Calibration MSB Value
 150 Calibration LSB Value
 152 CheckSum ((146+106+4+1+1+0+150) AND 255) = 152

Send Bytes: 42,146,106,4,1,3,0,150,154
This sample demonstrates the storage of calibration value of 150 into
Channel Numbers 1 through 3:

 42 I²C Start Address
 146 Header Byte 1
 106 Header Byte 2
 4 Command Number 4 Stores Calibration Data
 1 Start Channel Number (1-12)
 3 End channel number (1-12)
 0 Calibration MSB Value
 150 Calibration LSB Value
 152 CheckSum ((146+106+4+1+3+0+150) AND 255) = 154

Sensor Types:
Current monitoring controllers know exactly what sensor they are
working with. When querying device information data (found earlier
in this guide), the controller will return a “Type” value shown below
so your software can identify the type of sensor if necessary.

Supported Sensors: Type:
DLCT03C20 1
DLCT27C10 2
DLCT03CL20 3
OPCT16AL 4

18

